hp Discontinuous Galerkin Time Stepping For Parabolic Problems

نویسنده

  • T. Werder
چکیده

The algorithmic pattern of the hp Discontinuous Galerkin Finite Element Method (DGFEM) for the time semidiscretization of abstract parabolic evolution equations is presented. In combination with a continuous hp discretization in space we obtain a fully discrete hp-scheme for the numerical solution of parabolic problems. Numerical examples for the heat equation in a two dimensional domain confirm the exponential convergence rates which are predicted by theoretical results, under realistic assumptions on the initial data and the forcing terms. We also compare different methods to reduce the computational cost of the DGFEM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori error estimation for hp-version time-stepping methods for parabolic partial differential equations

The aim of this paper is to develop an hp-version a posteriori error analysis for the time discretization of parabolic problems by the continuous Galerkin (cG) and the discontinuous Galerkin (dG) time-stepping methods, respectively. The resulting error estimators are fully explicit with respect to the local time-steps and approximation orders. Their performance within an hp-adaptive refinement ...

متن کامل

hp-Version Space-Time Discontinuous Galerkin Methods for Parabolic Problems on Prismatic Meshes

Abstract. We present a new hp-version space-time discontinuous Galerkin (dG) finite element method for the numerical approximation of parabolic evolution equations on general spatial meshes consisting of polygonal/polyhedral (polytopic) elements, giving rise to prismatic space-time elements. A key feature of the proposed method is the use of space-time elemental polynomial bases of total degree...

متن کامل

An hp-Version Discontinuous Galerkin Method for Integro-Differential Equations of Parabolic Type

We study the numerical solution of a class of parabolic integro-differential equations with weakly singular kernels. We use an hp-version discontinuous Galerkin (DG) method for the discretization in time. We derive optimal hp-version error estimates and show that exponential rates of convergence can be achieved for solutions with singular (temporal) behavior near t = 0 caused by the weakly sing...

متن کامل

Linear Complexity Solution of Parabolic Integro-differential Equations

The numerical solution of parabolic problems ut + Au = 0 with a pseudodifferential operator A by wavelet discretization in space and hp discontinuous Galerkin time stepping is analyzed. It is proved that an approximation for u(T ) can be obtained in N points with accuracy O(N) for any integer p ≥ 1 in work and memory which grows logarithmically-linear in N .

متن کامل

Hp -version Discontinuous Galerkin Finite Element Methods for Semilinear Parabolic Problems

We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001